ГДЗ по геометрии 7 класс В. Ф. Бутузов, И. И. Юдина, Л. С. Атанасян, С. Б. Кадомцев, Э. Г. Позняк упражнение - 203 стр. 65

Условие
Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с, если:
а) один из углов равен 150°;
б) один из углов на 70° больше другого.
Решение #1

а) Один из углов равен 

При пересечении двух параллельных прямых  и  секущей  образуются восемь углов. Если один из углов равен , то мы можем найти остальные углы следующим образом:

1. Накрест лежащие углы равны, следовательно, угол, противоположный , также равен .

2. Смежные углы в сумме дают . Следовательно:

Таким образом, смежный угол будет равен .

Таким образом, четыре угла по етыре угла по 

б) Один из углов на  больше другого

Пусть один угол равен , тогда другой угол будет равен .

1. Поскольку эти два угла являются смежными, их сумма составляет:

Упрощаем уравнение:

Выразим :

2. Теперь найдем второй угол:

Таким образом, у нас есть: четыре угла по етыре других угла по 

Сообщить об ошибке
Сообщитe об ошибке